
 Meinberg Funkuhren

Meinberg Driver and API Concepts

Meinberg Driver and API Concepts 2/28 Last update on 2023-11-17 10:53

Table of Contents
Meinberg Driver and API Concepts 3 ..

Introduction 3 ...
Meinberg's Policy for Driver Software Packages 3 ...
Driver Usage 4 ..
Providing the Reference Time to NTP 4 ..

The Old Approach 5 ...
The New Approach 5 ..

Using Meinberg API Calls for PCI And USB Devices 6 ...
Development for Linux 6 ..
Development for Windows 7 ..
Opening a Device 8 ..
Closing the Device 10 ..
Getting Basic Device Information 10 ..
Checking if a Specific Feature is Supported 10 ..

Current Feature Check Functions 10 ..
Deprecated Feature Check Functions 11 ..
Deprecated Feature Check Macros 12 ..

Getting the Time from a Device 12 ..
A Legacy Call Returning Calendar Date and Time 12 ...
High Resolution Time 13 ..
Reading High Resolution Time and Status 13 ..
Reading Fast High Resolution Time Stamps Without Status 14 ...
Compensating the API Call Latency 14 ..
Access Times 15 ..
Interpolating the Time from the PCI Card 17 ..

Using the Time Capture Inputs 19 ...
Common Hints 19 ..
Specific Information for the PTP270PEX Card 20 ..
Handling Time Capture Events via the PCI Bus 20 ...
Getting Time Capture Events via a Serial Port 21 ..

Converting Time Stamps to Calendar Date and Time 22 ...
Enabling of Output Signals 24 ..
The Programmable Synthesizer 25 ...

Setting the Synthesizer Output 25 ...
Checking the Synthesizer State 26 ..

Calling API Functions from Other Kernel Modules 26 ..
Why is the Driver not Shipped with Open Source Systems? 26 ...
Unsupported Operating Systems 27 ...

Meinberg Driver and API Concepts 3/28 Last update on 2023-11-17 10:53

Meinberg Driver and API Concepts

Introduction

Meinberg is manufacturing a broad range of PCI cards and USB devices that can be used to provide
computers with the accurate time.

There have been different types of PCI cards available for different PCI bus versions, e.g. PCI
Express, the earlier 3.3V PCI/PCI-X interface, or the even older 5V legacy PCI, and different PCI
interface chips have been used for these PCI bus variants. Similarly, different USB devices have been
implemented according to different USB standards, e.g. v2.0 or v1.1).

Also, different types of time signal can be decoded by different device types, e.g.

GNSS satellite signals (GPS, Glonass, Galileo)
long wave signals (DCF-77, MSF, WWVB)
IRIG and similar timecodes
Precision Time Protocol (PTP/IEEE1588)

Thus the features and the level of accuracy provided by a specific card depends strongly on the type
of input signal as well as on the the bus interface type and chipset. E.g. the time accuracy available to
an application is usually much better with a PCI card than with an USB device, even though the
accuracy inside both types of devices may be in the same range. This is simply because a PCI card
can be accessed very much faster than a USB device.

Care has been taken that the software interface for a given feature is compatible across all devices
which support this feature.

Meinberg's Policy for Driver Software Packages

Meinberg's policy for driver software packages is to

provide only a single driver package per supported operating system, i.e., there's only
one driver package for all Windows versions, one driver package for all Linux versions, etc.

let the driver software be able to handle all Meinberg bus-level clock models that have
been introduced before a driver was released, including all PCI cards, USB devices, and even
legacy ISA cards, if possible.

make sure that API functions are source code compatible across all supported operating
systems, even for 32 bit and 64 bit versions of an operating system.

take care to keep compatibility of existing API functions across driver versions and device
types, and introduce new API functions to support new features provided by new devices.

https://kb.meinbergglobal.com/kb/time_sync/long_wave_signal_reception
https://kb.meinbergglobal.com/kb/irig_time_code_basics

Meinberg Driver and API Concepts 4/28 Last update on 2023-11-17 10:53

So new versions of the driver software packages may be required to support new types of clock
devices, support new features provided by new devices, or meet the requirements of new versions of
the supported operating systems. But in any case care will be taken not to break API compatibility for
existing applications. Thus existing applications will still work with newer devices providing the same
features, if only the driver software package is updated to support the new device.

All API calls provided by the driver packages are thread-safe, and thus can safely be used in a
multitasking environment.

Driver Usage

Basically the driver package supports using bus-level Meinberg devices in different ways:

1. Under Unix-like systems the card can be used as a reference time source (refclock) for the NTP
daemon (ntpd or chronyd) shipped with the OS to synchronize the system time with high accuracy.

2. On Windows there is a time service available which synchronizes the system time to the PCI or USB
device.

3. In any case applications can access the device directly using some API functions. This is often used
to read times directly, but can also be used for measurements with other hardware. For example,
some Meinberg devices provide time capture inputs which can latch the internal time whenever a
hardware slope is asserted to an input pin of the connector in the slot cover. The latched time stamps
are stored in an on-board FIFO buffer and can be retrieved using an API call.

Basically the on-board microcontroller decodes the incoming timing signal (GPS/GLONASS/Galileo,
IRIG, or whatever) autonomously, regardless whether some driver software is installed and loaded, or
not.

The driver software is only used to let applications access the device, e.g. read current time and
status, or read or write some configuration data.

Providing the Reference Time to NTP

Earlier versions of the driver package for Linux used an IRQ generated by the device to provide the
NTP daemon with the reference time from the card. Newer versions of the driver code use a different
approach which provides better accuracy, and is easier to port to other operating systems. How
accurately ntpd or chronyd can discipline the system time depends strongly on how accurately it
can determine the difference between the system time and the reference time at a given point in
time.

Meinberg Driver and API Concepts 5/28 Last update on 2023-11-17 10:53

The Old Approach

The original approach was to use the parse driver provided by ntpd which has originally been
developed to read a time string via a serial port. Unlike the GPS receivers from most other
manufacturers the external GPS receivers manufactured by Meinberg can send a time string once per
second very close to the second changeover. Of course, if supported by the OS, the 1 PPS signal can
additionally be used to account for latencies in the serial driver, etc. In any case, the resulting
reference time stamp is always for a second changeover, i.e., the fractions of the reference time
stamp are always 0.

The approach for Meinberg PCI card drivers was to let the card generate an IRQ whenever the second
changeover occurs, and emulate a serial port for ntpd where the parse driver can wait for new data
similar to the arrival of the serial time string.

For use with a serial device this is OK since the driver has to wait until device sends a string, and the
application knows the string has been sent at the second changeover.

An application can not send a request to a serial device at an arbitrary point in time to read the
current time of the serial device. The latencies introduced by sending the serial request, processing
the request in the device, having the device send the reply, and receiving the reply would degrade
the resulting accuracy so that this became useless for accurate timekeeping (BTW, this is exactly the
problem ntpd tries to avoid when evaluating four time stamps from a polling event to an upstream
NTP server).

If you have a bus-level device then an application can read the current time from the card at arbitrary
points in time. On the other hand, the approach using IRQs at second changeovers has several
disadvantages:

If several drivers for several PCI cards share the same IRQ then the kernel has to call the IRQ
handlers registered by each driver one after the other to let them check if their device has
generated the IRQ. If other drivers have been loaded and thus have registered their IRQ handler
before our driver, then there's a significant latency introduced until the time from our card is
actually read.

The effect is even worse since the parse driver works in a way that the corresponding system
time stamp is taken by the parse driver, i.e. after our driver has read the time from the card and
woken up the blocking read call from the parse driver.

If there are several cards which generate an IRQ exactly at each second changeover then there
are always several IRQs and accesses to the cards at nearly the same time.

The New Approach

A new approach has been implemented with a new API call to the kernel driver where the kernel
driver reads both the reference time from the hardware device with high resolution and accuracy and
the corresponding system time as close as possible after each other. Both time stamps are then
returned to the caller which can do some plausibility checks and then feed the time stamp pair to

Meinberg Driver and API Concepts 6/28 Last update on 2023-11-17 10:53

ntpd's shared memory driver.

The advantage of this approach is that there are no interrupt latencies anymore. If the target platform
supports fast high resolution timers like the TSC on x86 then the kernel driver can take such counter
values before and after reading the time stamps, so the calling application can determine how long it
usually takes to read the time stamps. If the execution time is significantly longer than “usual” then
the call may have been interrupted or preempted, and thus the application can discard the readings
and simply retry once more, since the API function can be called at arbitrary points in time.

The only drawback of this approach is that an additional simple daemon is required which calls the
driver's API function periodically and feeds the results to a shared memory segment where it can be
picked up by ntpd or chronyd. This is basically what the gpsd program does for external GPS
receivers that send an NMEA time string, or use a proprietary binary protocol. The results seen by this
approach are very much better than the results using the interrupt-driven parse driver, and, as
mentioned above, no support for IRQs, no blocking reads, and no wait queues in the kernel driver are
required.

Using Meinberg API Calls for PCI And USB Devices

API functions to access the device to read the current time, or read/write configuration information
are exported by a module called mbgdevio (Meinberg Device I/O) which is provided by the driver
package for the operating system. The driver package for Windows provides this module as a DLL
(mbgdevio.dll), and current versions of the Linux driver package provide this module as shared
object library (libmbgdevio.so).

The prototypes for the API functions exported by the mbgdevio module can be found in the header
file mbgdevio.h, and the associated data structures are defined in the additional header files which
are included automatically, so the API functions can be used natively by applications written in C or
C++, or can be called from other programming environments using the proper wrappers or bindings.

Development for Linux

For Linux all the files required to build an own application are already installed with the driver
package which is available as source code at our download page:

https://www.meinbergglobal.com/english/sw/#linux

The Linux driver package can be used both with 32 bit and 64 bit versions of the Linux operating
system, and once the package has been installed there are some shared object libraries available that
can be used with 3rd party projects.

To use the basic API calls it is sufficient to add the following lines to a project Makefile to let the
compiler find the header files, and link your application against the mbgdevio library:

https://www.meinbergglobal.com/english/sw/#linux

Meinberg Driver and API Concepts 7/28 Last update on 2023-11-17 10:53

CPPFLAGS += -I/usr/local/include/mbglib
LDFLAGS += -lmbgdevio

This makes it very easy to let simple applications use some Meinberg API functions from an own
application written in C or C++.

However, if some extended functionality needs to be provided it may be necessary to add some more
source code or object modules to the project.

Development for Windows

The driver package for Windows provides kernel drivers and DLLs for 32 bit and 64 bit versions of the
Windows operating system.

Please note the location of the installed DLLs depends on whether the installed Windows version is 32
bit or 64 bit.

On 32 bit Windows there are only 32 bit DLLs:

C:\windows\system32 contains 32 bit versions of the DLLs

However, despite of the misleading naming convention, the system32 folder always contains the
native versions of the DLLs, so on 64 bit Windows it contains the 64 bit versions of the DLLs, and the
32 bit versions of the DLLs can be found in a different folder:

C:\windows\system32 contains 64 bit versions of the DLLs
C:\Windows\SysWOW64 contains 32 bit versions of the DLLs

This sounds pretty confusing since 64 bit DLLs are in a folder with '32' in its name, and 32 bit DLLs are
in a folder with '64' in its name. However, WoW64 stands for Windows-On-Windows 64-bit which
is the name of the Windows subsystem which allows running 32 bit applications on a 64 bit platform.

The correct DLLs are found automatically when a program starts, so there is no need to copy the DLLs
to a different location when writing an own application.

However, for development of own C/C++ applications some header files are required which provide
function prototypes and definitions of associated data structures, and import libraries
associated with the DLLs. An import library tells the build environment which DLL (and also which
version of a DLL, 32 or 64 bit) has to be loaded to be able to use an API function, and the function
prototype in the header file tells the compiler how the function has to be called, and what the function
returns.

Please note that the same header files can be used, but different import libraries for 32 bit and 64 bit

Meinberg Driver and API Concepts 8/28 Last update on 2023-11-17 10:53

Windows versions are available in separate subdirectories, so care must be taken that applications
are linked against the import libraries in the appropriate subdirectory.

An SDK is available which provides the header files and import libraries:

http://www.meinbergglobal.com/english/sw/sdk.htm#windows

 But please note the code in the SDK is currently pretty old and needs to be updated, but
nevertheless it is still valid, so it can still be used.

On the other hand, current versions of the header files and import libraries are shipped with the
mbgtools for Windows package, which is also provided as source code.

Both packages provide an mbglib folder which contains the necessary files. The proposed way to use
these files with an own project is to copy the mbglib folder and its subfolders to the own project, and
add the relevant include search paths and import libraries to the project.

Add these paths to the header include file search path:

mbglib\common
mbglib\win32

and add one of these paths to the library search path:

mbglib\lib\bc # for 32 bit applications with Borland Compilers
mbglib\lib\msc # for 32 bit applications with Microsoft Compilers (Visual
Studio)
mbglib\lib64\msc # for 64 bit applications with Microsoft Compilers (Visual
Studio)

The files in the mbglib folder should be left untouched to make future maintenance of the application
easier by simply replacing the mbglib folder and its files by a newer version.

Opening a Device

The Meinberg driver software and API functions support several PCI and/or USB devices installed at
the same time. This can be several instances of the same type of device, or several different device
types. Software going to access a device directly first needs to open a specific device to get a device
handle which can then be used with subsequent calls to address the device to be accessed.

Under Windows, device names are based on a unique ID number, so there is an API call

http://www.meinbergglobal.com/english/sw/sdk.htm#windows
https://kb.meinbergglobal.com/kb/driver_software/driver_software_for_windows/mbgtools_for_windows

Meinberg Driver and API Concepts 9/28 Last update on 2023-11-17 10:53

mbg_find_devices() which looks for all supported devices and builds an internal list which can then be
accessed by an index.

Under Linux and FreeBSD devices have “human readable” names which are already distinguished by
a subsequent index number, e.g. /dev/mbgclock0, /dev/mbgclock1, etc., so there is basically no
need to look for all supported devices first, but calling mbg_find_devices() anyway does not hurt and
increases the portability of the code across operating systems:

int devices_found = mbg_find_devices();

if (devices_found == 0)
{
 fprintf(stderr, “No supported device found\n”);
 exit(1);
}

After the call above has been executed there are 2 different ways to open a specific device. The first
way calling mbg_open_device() simply uses the device index to open a specific device from the list of
available devices. If only a single device is available the index is always 0, so this is suitable for most
applications which only deal with a single device:

MBG_DEV_HANDLE dh;
int dev_idx = 0;

dh = mbg_open_device(dev_idx);

if (dh == MBG_INVALID_DEV_HANDLE)
{
 fprintf(stderr, “Failed to open device #%i: %s\n”,
 dev_idx, strerror(errno));
 exit(1);
}

If several different types of device are installed an alternative way to open a device of a specific type
is to use the different API call mbg_open_device_by_name():

const char dev_name[] = “GPS180PEX”;
MBG_DEV_HANDLE dh;

dh = mbg_open_device_by_name(dev_name, MBG_MATCH_MODEL);

if (dh == MBG_INVALID_DEV_HANDLE)
{
 fprintf(stderr, “Failed to open device %s: %s\n”,
 dev_name, mbg_strerror(rc));
 exit(1);

https://kb.meinbergglobal.com/mbglib-api/mbgdevio_8h.html#a708aafc8c3a6cb52e984ddb309817e24
https://kb.meinbergglobal.com/mbglib-api/mbgdevio_8h.html#a708aafc8c3a6cb52e984ddb309817e24
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__open__fncs.html#gaa8cabd2a3e44955283f55528dc7ed283
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__open__fncs.html#gaca9b67e5b44ecb2f4c33180900bddea0

Meinberg Driver and API Concepts 10/28 Last update on 2023-11-17 10:53

}

The device handle returned by either of these functions can be used with all subsequent API calls for
the same device, until the device is closed.

Closing the Device

Even though all device handles are closed automatically when an application terminates, it is good
practice to let an application call mbg_close_device() close the device when there will be no more
accesses:

mbg_close_device(&dh);

This also sets the device handle to MBG_INVALID_DEV_HANDLE.

Getting Basic Device Information

Right after a device has been opened, it is good practice to call the mbg_get_device_info() function to
get some basic information on the device, including the device type, firmware version, etc.
Eventually, this retrieved information has to be passed to some other extended API calls, but for some
basic applications this is just optional:

PCPS_DEV dev_info;
int rc = mbg_get_device_info(dh, &dev_info);

if (mbg_rc_is_error(rc))
{
 fprintf(stderr, “Failed to get device info from device: %s\n”,
mbg_strerror(rc));
 exit(1);
}

Checking if a Specific Feature is Supported

Current Feature Check Functions

Some features are only supported optionally, by particular types of devices, or by particular new

https://kb.meinbergglobal.com/mbglib-api/mbgdevio_8h.html#ad378d2d2ff46de5f98afe819f15c2d11
https://kb.meinbergglobal.com/mbglib-api/mbgdevio_8h.html#a70d8949e47a4f2939c5c190ceb8f17ab

Meinberg Driver and API Concepts 11/28 Last update on 2023-11-17 10:53

firmware versions where this feature has been implemented.

There is a group of functions available which can be used to check if a specific feature is supported.
These functions return MBG_SUCCESS if the requested feature is supported,
MBG_ERR_NOT_SUPP_BY_DEV if the feature is not supported, or some other error code if the function
call failed to retrieve the requested information.

The example code below calls the mbg_chk_dev_has_synth() function to check if a programmable
synthesizer is provided by the particular device:

int rc = mbg_chk_dev_has_synth(dh);

if (mbg_rc_is_error(rc))
{
 fprintf(stderr, “No synthesizer provided: %s\n
 mbg_strerror(rc));
 exit(1);
}

// If we get here then the device provides a synthesizer

The availability of other features can be checked in a similar way by calling the appropriate function.

Deprecated Feature Check Functions

The calls above replace a couple of other API calls that had been introduced earlier, where each
function provides a return code that needs to be checked, and only if the return code is
MBG_SUCCESS, a variable has been updated with the requested information:

int supported = 0;
int rc = mbg_dev_has_synth(dh, &supported);

if (rc != MBG_SUCCESS || !supported)
{
 fprintf(stderr, “No synthesizer provided.\n);
 exit(1);
}

// If we get here then the device provides a synthesizer

So after each call of such a function there are 2 return values that need to be checked to see if the
requested feature is supported, or not.

The new functions have been introduced to make things easier, and the old check functions have

https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__chk__supp__fncs.html
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__chk__supp__fncs.html#ga0059125c3fe68e1028865110fefed23e
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__chk__supp__fncs__deprecated.html

Meinberg Driver and API Concepts 12/28 Last update on 2023-11-17 10:53

been marked deprecated even though they are still supported.

Deprecated Feature Check Macros

There are also some macros _pcps_has_synth() that had been introduced to check if a specific
feature is supported, or not.

However, the code generated by these macros depends mostly on the definition of the macros in the
header files used when compiling an application, so the result may not be appropriate for new devices
which have been introduce after the header files have been published.

On the other hand, the current feature check functions always make a call into the device driver.
Since the device driver has to be updated anyway to support a new device, it also knows which
features are supported by the device, and can return the correct information.

So usage of these macros is discouraged, and the the current feature check functions should be used
instead.

Getting the Time from a Device

There are different groups of API calls available which can be used to read the current time from a
device. Each group of API calls has specific advantages and disadvantages.

A Legacy Call Returning Calendar Date and Time

The first series of Meinberg bus-level devices only supported an API call named mbg_get_time() to
read the card's current date, time and status. The returned data structure (PCPS_TIME) contains the
card's local date and time in broken down format, i.e. calendar date plus hours, minutes, seconds,
and tenths of seconds, according to the time zone setting on the card.

At the time this was introduced this was appropriate for operating systems like MS-DOS which don't
distinguish between local time and UTC, and the resolution of the system time was only about 55 ms,
i.e. worse than the 10 ms resolution supported by this API call.

The broken-down date and time provided by this call requires much computation if e.g. a time
difference needs to be determined. This API call is still supported by all PCI and USB devices, but it
isn't widely used anymore.

https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__legacy__time__fncs.html#ga68702eee38d61c256189b99a20ff6c89
https://kb.meinbergglobal.com/mbglib-api/structPCPS__TIME.html

Meinberg Driver and API Concepts 13/28 Last update on 2023-11-17 10:53

High Resolution Time

Modern operating systems run on UTC internally, and the system time is kept in a linear format, e.g.
the number of seconds since an epoch, plus fractions of a second (POSIX time_t), or the number of
100 ns units since an epoch (Windows FILETIME).

So some other functions have been introduced which return a linear time, and provide high resolution
time stamps, which can be used very much easier in computations, e.g. do time comparisons, add
offsets, etc.

There are standard functions available that can be used to convert the linear number of seconds into
a calendar date and time.

Reading High Resolution Time and Status

The mbg_get_hr_time...() group of functions basically read a PCPS_HR_TIME structure which contains a
PCPS_TIME_STAMP field plus some additional status information, e.g. if the card is currently
synchronized, or not, a local time offset associated with the returned UTC time stamp, according to
the time zone configured on the device, etc.

Even though most types of devices support these calls, there are some older devices out there which
may not support this, so if in doubt the mbg_chk_dev_has_hr_time() function should be used to make
sure these calls are indeed supported by the particular device.

These API functions always require interaction with the on-board microcontroller. However,
there is some hardware support for these calls to yield highest accuracy, i.e. the on-board time is
latched on entry of the call. Since the on-board microcontroller has to copy the latched time stamp
plus some additional data to the output registers which can be read via the PCI bus, the overall
execution time required to read the data is some tens of microseconds, or even longer if another
access is in progress, compared to just a couple of microseconds required to just read a fast memory
mapped time stamp that is provided by the current PCI Express cards.

Also, subsequent API calls can be blocked by the on-board microcontroller. This is required to
prevent the microcontroller from being overrun by API calls which would prevent the controller from
decoding its input signal. The blocking interval can be a couple of microseconds for new types of card
up to a few milliseconds for old PCI card models, depending on the type of card and the type of
microcontroller on the card.

Since the time stamps are taken on entry but the copying to the output registers is delayed for the
blocking interval, the returned time stamp is accurate for the entry of the API call but the call takes
longer to execute until it returns.

This call is protected by a mutex semaphore used for any access requiring interaction with the on-
board microcontroller, so an mbg_get_hr_time() call can block for a longer time than it normally needs
to execute if a different API function reading or writing a large data structure is in progress from a
different application or process.

https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__hr__time__fncs.html
https://kb.meinbergglobal.com/mbglib-api/structPCPS__HR__TIME.html
https://kb.meinbergglobal.com/mbglib-api/structPCPS__TIME__STAMP.html
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__chk__supp__fncs.html#ga781a037058d557f98a3469dd259821bd
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__hr__time__fncs.html#ga40ccaec22438c841836372e2b7c8d39a

Meinberg Driver and API Concepts 14/28 Last update on 2023-11-17 10:53

Please note:

The same blocking mechanism and mutex apply if configuration data is read from or written to
a device.

The exact access times also depend on the operating system and CPU speed.

There are mbg_get_…_cycles() and mbg_get_…_comp() variants of the call which may
have advantages over the standard call. Please see the chapter about latency compensation for
details.

Reading Fast High Resolution Time Stamps Without Status

The mbg_get_fast_hr_timestamp...() functions are fast because they read a time stamp from a
memory mapped register on the card. However, these calls return just a time stamp as
PCPS_TIME_STAMP, but no additional status information. On the other hand, this API call does not
require interaction with the on-board microcontroller, and thus does not block.

These calls are only supported by PCI Express cards. Older standard PCI cards and USB devices don't
support this because their PCI interface circuits don't provide support for these functions. The
mbg_chk_dev_has_fast_hr_timestamp() function can be used to determine if the particular device
supports fast high resolution time stamps.

Memory mapped access has to be done in 2 subsequent read accesses to the board, so this is done
inside the kernel driver which protects these accesses by a spinlock semaphore. This also makes sure
the call is safe across different threads or applications. The spinlock is only held across the 2 read
accesses, so a thread doesn't have to wait very long if another thread currently holds the spinlock.

Please note:

The spinlock used by these functions doesn't interfere with the mutex used for functions
requiring interaction with the on-board microcontroller.

The exact access times also depend on the operating system and CPU speed. Also the type of
chipset as well as the number and type of PCI bridges on the mainboard affect the total access
time. See the chapter about access times for details.

There are mbg_get_…_cycles() and mbg_get_…_comp() variants of the call which may
have advantages over the standard call. Please see the chapter about latency compensation for
details.

Compensating the API Call Latency

Both of the mbg_get_hr_time…() calls and the mbg_get_fast_hr_timestamp…() calls have
variants called mbg_get_…_cycles(). These functions additionally pick up the PC's cycles counter

https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__fast__timestamp__fncs.html
https://kb.meinbergglobal.com/mbglib-api/structPCPS__TIME__STAMP.html
https://kb.meinbergglobal.com/mbglib-api/group__mbgdevio__chk__supp__fncs.html#ga95593a2ce07ab2b2e50fcb237b3d289a

Meinberg Driver and API Concepts 15/28 Last update on 2023-11-17 10:53

when they read the time stamp from the device, and return the card's time stamp plus the associated
cycles value to the caller.

The calling process can read a cycles count c1 before it calls one of the .._cycles() API functions.
The kernel driver then reads another cycles count c2 when the time stamp is read from the PCI card.
The caller can then compute (c2 - c1) / cf to convert the difference of cycles counts to a time
interval representing the latency, where cf is the cycles frequency. This also contains the time
interval the API call had to wait for a semaphore as mentioned above.

The mbg_get_…_comp() calls do exactly what has been described above, i.e. read the cycles count,
call the associated .._cycles() function, but in addition they compute the latency and subtract the
latency from the time stamp read from the board. So the time stamps returned by the .._comp()
calls reflect as good as possible the point in time when the API function has been called by the
application.

In case of the mbg_get_fast_hr_timestamp() call it's worth thinking about using the standard call
or the .._comp() variant.

Under Linux the cycles are read from the TSC counters which are provided by the individual CPU cores
of the x86 and x86_64 architecture. This is very fast and works well if the counters in the individual
cores are synchronized and always increment at the same clock speed.

This is usually the case with newest CPUs, but there are a number of older CPU types from Intel and
AMD where the TSC counters may not be synchronized, or where the TSC clock is derived from the
CPU clock and thus can be slowed down for power saving, e.g. if Intel's Speedstep or AMD's
Cold'n'Quiet“ features are enabled in the PC BIOS.

Such limitations may lead to unrelated cycles counts returned by subsequent API calls, and thus the
latency compensation may yield wrong results.

Using a different timer provided by the chipset on the mainboard is usually not a solution since
accessing those timers is much slower than reading the TSC, and thus the execution time to read the
timers is in the same range as the latency itself.

Access Times

In any case the access time to the device needs to be taken into account. Of course access via the PCI
bus is much faster than via a USB connection, but there are still limitations by the PCI bus
architecture.

Even in case of PCI there is a significant latency due to the tree architecture of the PCI busses on the
mainboard. There is a variable number of PCI bridges on the mainboard between the CPU and a
specific PCI slot into which a card has been installed, and the access time may vary depending on the
type and number of PCI bridges involved in a transfer.

Even though the PCI Express bus has been designed for high data rates the access time for single
read accesses is pretty bad. Typical access times to read a 64 bit time stamp may vary from 3 to 12

Meinberg Driver and API Concepts 16/28 Last update on 2023-11-17 10:53

microseconds.

There are mainboards where the mean execution time required to read a time stamp even depends
on the physical slot on the same mainboard into which the PCI card is installed, and varies from 5 to 8
microseconds, depending on the slot.

Since the PCI bus is formed as a tree, parts of the bus between two different slots and the CPU may
be shared. This means if actually data is transferred from one slot to one CPU core when a different
CPU core tries to read from a PCI card installed in a slot which shares the same bus then the 2nd
access is delayed due to PCI bus arbitration.

This can't be controlled by a PCI card or its driver, and as a result single read accesses to a PCI card
can be significantly slower than usual, even if the mean access time is in the low microsecond range.

The mbgfasttstamp utility program can be used to measure the access times, for example:

mbgfasttstamp -n 15 -b /dev/mbgclock0

mbgfasttstamp v3.4.99 copyright Meinberg 2007-2013
GPS180PEX 029511026220 (FW 1.10, ASIC 8.05) at port 0xE000, irq 16
HR time 2013-11-18 11:49:28.0403599, latency: 0.2 us
HR time 2013-11-18 11:49:28.0403711 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403744 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403776 (+3.3 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403808 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403841 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403872 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403905 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0403936 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0404092 (+15.6 us), latency: 0.2 us
HR time 2013-11-18 11:49:28.0404124 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0404156 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0404188 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0404220 (+3.2 us), latency: 0.1 us
HR time 2013-11-18 11:49:28.0404253 (+3.2 us), latency: 0.1 us

The program is shipped with the Meinberg driver package for Linux, but a Windows version is also
available by the mbgtools for Windows package.

Using the command line above, the tool reads 15 subsequent time stamps from the PCI card into a
memory buffer in a fast loop, and after the loop has finished it prints the time stamps and differences.
The time difference just reports the difference between the current time stamp and the previous time
stamp, which is mainly the execution time required to read a single time stamp. The latency is the
time from the beginning of the read call until the memory location is actually read in the kernel driver.
The reason for the outlier in the example above can be due to a PCI bus arbitration, or due to
hardware IRQ executed on the same core the test program. This shows another effect which may
affect the resulting accuracy for an application.

https://kb.meinbergglobal.com/kb/driver_software/driver_software_for_linux/linux_driver_package
https://kb.meinbergglobal.com/kb/driver_software/driver_software_for_windows/mbgtools_for_windows

Meinberg Driver and API Concepts 17/28 Last update on 2023-11-17 10:53

Interpolating the Time from the PCI Card

If an application needs to retrieve accurate time stamps at a very high rate then PCI bus access can
be the limiting factor which prevents the application from reading each time stamp directly from a PCI
card.

An approach to workaround this limitation could be to read the time from the PCI card in relatively
large intervals only, e.g. once per second, and then let the application extrapolate the time using
values from some high resolution counter which can be accessed very fast.

In the Meinberg driver/API terminology this is referred to as cycles counter, and there are API calls
which return a time stamp of the current time from the PCI card, plus an associated cycles count. An
application can then start an own thread which periodically gets a time stamp from the card and an
associated cycles counter value, and have other “worker” threads get the current cycles count only
and convert it to real time using the last recent time stamp / cycles pair:

read the current cycles count

use the cycles count from the last recent time stamp cycles pair to determine the elapsed
number of cycles after the pair has been taken

add the resulting time offset to the last recent time stamp to extrapolate the current time

This is very fast since the main thread(s) don't need to access the PCI card directly, and just very few
fast computations have to be made.

The extrapolation is also very accurate since if you don't use the clock frequency of the cycles counter
but let the extra thread which updates the time stamp/cycles pair determine the cycles frequency
based on the number of cycles which have elapsed between the time stamps returned by 2
subsequent updates.

Actually our Linux driver uses the CPU's TSC register for the cycles counter, which can be read very
fast both from kernel space (inside the driver) and user space (from an application).

A possible drawback here is that you need to make sure you have modern CPU types installed on your
mainboard. In the past there have been CPU types where the TSC counters on different CPU cores
were not synchronized, in which case the extrapolation explained above could yield wrong results if
different threads were executed on different CPU cores.

The Linux driver package contains an example program called mbgxhrtime which demonstrates how
this can be implemented:

mbgxhrtime v3.4.99 copyright Meinberg 2008-2013
Initial process affinity mask: CPU0…CPU7
Process affinity mask set for CPU0 only
GPS180PEX 029511026220 (FW 1.10, ASIC 8.05) at port 0xE000, irq 16
Waiting until PC cycles frequency has been computed …
PC cycles freq: 3392.321462 MHz, default: 3392.262000 MHz
t: 2013-12-19 16:21:23.9403698 UTC+1:00h (0.281 us)

Meinberg Driver and API Concepts 18/28 Last update on 2023-11-17 10:53

t: 2013-12-19 16:21:23.9404369 UTC+1:00h (0.109 us)
t: 2013-12-19 16:21:23.9404413 UTC+1:00h (0.054 us)
t: 2013-12-19 16:21:23.9404449 UTC+1:00h (0.052 us)
t: 2013-12-19 16:21:23.9404481 UTC+1:00h (0.054 us)
t: 2013-12-19 16:21:23.9404512 UTC+1:00h (0.052 us)
t: 2013-12-19 16:21:23.9404545 UTC+1:00h (0.054 us)
t: 2013-12-19 16:21:23.9404576 UTC+1:00h (0.054 us)
t: 2013-12-19 16:21:23.9404607 UTC+1:00h (0.053 us)
t: 2013-12-19 16:21:23.9404638 UTC+1:00h (0.054 us)

This example has been run on a Intel Core i7 CPU at 3.4 GHz, so the reported cycles frequency of
3392 MHz indicates that the TSC is used for cycles. As a consequence, times can be interpolated very
fast. The example above also shows that the true cycles frequency computed by the application
based on the accurate time stamps is differs from the default cycles frequency reported by the Linux
kernel.

Under Windows the cycles counts are retrieved using the Windows QueryPerformanceCounter
(QPC) function which can use one of the available timers in the CPU or on the mainboard. The
mbgxhrtime program displays the cycles frequency at startup. On a Windows XP system the output
could look like:

mbgxhrtime v3.4.99 copyright Meinberg 2008-2013
Initial process affinity mask: CPU0…CPU1
Process affinity mask set for CPU0 only
PZF180PEX 046411000030 (FW 1.07, ASIC 10.00) at port 0xC800, irq 17
Waiting until PC cycles frequency has been computed …
PC cycles freq: 3.570605 MHz, default: 3.579545 MHz
t: 2013-12-19 15:14:53.1607658 UTC (6.441 us)
t: 2013-12-19 15:14:53.1607868 UTC (6.441 us)
t: 2013-12-19 15:14:53.1608013 UTC (7.282 us)
t: 2013-12-19 15:14:53.1608170 UTC (6.441 us)
t: 2013-12-19 15:14:53.1608319 UTC (7.842 us)
t: 2013-12-19 15:14:53.1608484 UTC (6.441 us)
t: 2013-12-19 15:14:53.1608630 UTC (8.122 us)
t: 2013-12-19 15:14:53.1608795 UTC (6.441 us)
t: 2013-12-19 15:14:53.1608943 UTC (7.842 us)

The cycles frequency is about 3.58 MHz here, which indicates that the power management timer is
used as cycles counter. The PM timer is located in the chipset and accessed via a peripheral bus, and
thus it takes much longer to read the PM time count than to read the TSC count from a CPU register.
As a consequence the differences between 2 interpolated time stamps on the Windows machine here
are much larger than for the Linux system.

Depending on the Windows installation the QPC API could also be implemented using the HPET timer.
In this case the reported frequency would be about 10 MHz.

In the mbgxhrtime example program the updater thread calls the
mbg_get_fast_hr_timestamp_cycles() functions in periodic intervals, e.g. once per second, and

Meinberg Driver and API Concepts 19/28 Last update on 2023-11-17 10:53

updates the time stamp/cycles pair. The update, i.e. copying the new pair over the old one, is done
inside a critical section (i.e. protected by a semaphore) to make sure the data pair used by the worker
threads is always consistent.

As an improvement for highest accuracy the updater thread could read the TSC or QPC before and
after calling mbg_get_fast_hr_timestamp_cycles(), so it could check how long it has actually
taken to execute this call. If this took longer than “usual” then access to the PCI card may have been
delayed by a hardware IRQ, or a PCI bus arbitration, and the call could be repeated if this is the case.
However, this is actually not implemented in the functions provided by the shared object libraries /
DLLs.

Using the Time Capture Inputs

Common Hints

Some Meinberg devices, PCI cards as well as some standalone devices, provide time capture inputs
which can be used to time stamp external hardware trigger slopes.

Whenever a trigger slope is detected at one of the inputs the device saves the current on-board time
as a capture event in an on-board FIFO buffer which can hold up to about 600 events, depending on
the specific device. The capture event structure also includes the channel number at which the slope
was detected, usually 0 or 1.

Capture events can be retrieved from the FIFO in 2 different ways:

If a device provides a serial port and supports the Meinberg Capture String type then the device
can be configured to send an ASCII string automatically via the serial port as soon as a capture
event has been detected.

If a device is a PCI card then capture events can be retrieved via the PCI bus by using the
appropriate API calls provided by the driver software package. This is much faster than sending
and receiveing time capture events via a serial port, and doesn't require any external cabling.

Whenever a capture event is retrieved from the FIFO buffer it is removed from the buffer, so if a
capture event has already been sent as string via the serial port it can't be retrieved anymore via the
PCI bus using the API calls.

Most PCI cards with time capture inputs also provide one or two serial ports, so if time capture events
are to be retrieved via the PCI bus it should be made sure that none of the card's serial ports has
been configured to send a time capture string automatically. One of the serial ports and the time
capture inputs as well as some signal outputs are available via the 9 pin D-type connector in the
card's slot cover.

In order to use the time capture inputs the associated DIP switches of the card have to be set to the
“ON” position to wire the pin from the connector in the slot cover to the internal capturing circuitry.
By default all switches are in the OFF position. See the card's PDF manual for details. Please take care
to use 5V logic levels only. Higher voltages may damage the card.

https://www.meinbergglobal.com/english/specs/capstr.htm

Meinberg Driver and API Concepts 20/28 Last update on 2023-11-17 10:53

If the capture events are to be retrieved by an application running on the machine where a PCI card is
installed then it's most appropriate to read the capture events from the FIFO via the PCI bus. This is
fast, and the data structures are easy to evaluate.

Most devices can only capture events on a falling trigger slope, except the PTP270PEX card. See the
next chapter.

Specific Information for the PTP270PEX Card

Please note the PTP270PEX card provides no serial port, even though it has 9 pin D-type connector in
its slot cover, so capture events can be retrieved from this card only via the PCI bus, using the API
calls.

Most devices can only capture events on a falling trigger slope, and this is not configurable. However,
the PTP270PEX card captures on the rising edge of an input signal by default, but for each of its 2
capture channels the capture slope can be configured.

Since this is very specific to the PTP270PEX card there is unfortunately no API call which can be used
change this configuration. Instead, you have to open an SSH session to the Linux system running on
the PTP270PEX card, login, and type:

nano /config/tsu_config

Locate the following lines at the bottom of the file:

UCAP0 inverted: 0
UCAP1 inverted: 0

If you want one or both inputs to capture on the falling edge set the appropriate value to '1'. Then
press Ctrl+X, Y, <Enter> to exit the nano editor.

Then power cycle the PC and the card to let the card reboot and make the changes become effective.
The changed settings are saved persistently on the card, so this change has to be done only once.

Handling Time Capture Events via the PCI Bus

Reading capture events via the PCI bus is very much faster than sending and receiveing time capture
events via a serial port, and it doesn't require any external cabling. The Meinberg driver software
supports the following API calls to deal with the time capture events via the PCI bus:

mbg_clr_ucap_buff() Clear the FIFO on the card.
mbg_get_ucap_entries() Return the current and maximum number of entries of the FIFO

https://www.meinbergglobal.com/english/archive/ptp270pex.htm

Meinberg Driver and API Concepts 21/28 Last update on 2023-11-17 10:53

buffer.
mbg_get_ucap_event() Retrieve an event. The event is removed from the FIFO buffer. If the
buffer has been empty then the retrieved time stamp is 0.00000.

A common way to read all available capture events as fast as possible is:

// Read out events from the FIFO and wait
// for new events if the FIFO is empty.
for (;;)
{
 PCPS_HR_TIME ucap_event;
 rc = mbg_get_ucap_event(dh, &ucap_event);
 if (mbg_rc_is_error(rc))
 break; // an error has occurred

 // If a capture event has been read then it
 // has been removed from the card's FIFO buffer.
 // If the time stamp is not 0 then a new capture
 // event has been retrieved.
 if (ucap_event.tstamp.sec || ucap_event.tstamp.frac)
 {
 show_ucap_event(&ucap_event);
 continue; // immediately read next event
 }
 usleep(USLEEP_INTV); // sleep, then try again
}

Capture events are retrieved as PCPS_HR_TIME structure containing the time stamp (UTC), the
channel number, and some status flags, e.g. PCPS_UCAP_OVERRUN if capture events occurred faster
than they could be saved, or PCPS_UCAP_BUFFER_FULL if no space was left in the FIFO buffer. How
to evaluate this structure is explained in one of the next chapters.

Getting Time Capture Events via a Serial Port

If time capture events are to be sent via a serial port rather than be read via the PCI bus then it
should be made sure that only one of the physical ports provided by the device has been configured
to send the capture string.

Usually the easiest way is to let a string be sent automatically whenever a trigger slope has occurred
and thus an event has been generated. To achieve this the selected port has to be configured to
output the “Meinberg Capture” string format, and the “Mode” for this port has to be set to
“automatically”.

If the device provides more than one physical port then all other ports should be configured for a
different string format. Otherwise capture events could also be sent via a different port and get lost

Meinberg Driver and API Concepts 22/28 Last update on 2023-11-17 10:53

for the application waiting for a capture string sent via the selected port.

The baud rate and framing can be set according to the requirement of the application which waits to
read the capture event strings. Please keep in mind that the baud rate affects the maximum capture
rate for continuous operation. The lower the baud rate the more time it takes to send a string for an
event, and if the trigger events occur at a higher rate then the FIFO buffer fills over time until it finally
overflows.

Capture events can be read very much faster via the PCI bus by using the appropriate API calls, if a
device supports this. So the card can handle a higher continuous rate of trigger events if those API
calls are used.

No Meinberg-specific API calls have to be used to read a capture string via the serial port. The string is
just an ASCII text string, so an application just has to open the serial port, read a line of text and
parse the string to decode the date and time of the capture event.

A description of the capture string format can be found here:

http://www.meinbergglobal.com/english/specs/capstr.htm

Converting Time Stamps to Calendar Date and Time

The PCPS_TIME_STAMP structure's sec field contains the seconds since 1970 similar to the POSIX
time_t value which is returned by the standard C library function time(). This simplifies
computations without having to care about ranges of seconds, minutes, hours, etc.

Accordingly, the sec field can be broken down to human readable calender date and time using the
standard gmtime() function provided by the standard C library.

However, please keep in mind that the seconds field from the PCPS_TIME_STAMP structure is always
only 32 bits wide, while the time_t type supported by some programming environments is 64 bit
wide to avoid an overflow that happens with the 32 bit signed time_t type in January 2038.

PCPS_HR_TIME ucap;
time_t t;
struct tm tm;
mbg_get_ucap_event(dh, &ucap);
// first assign to a time_t type variable since time_t may be 32 or 64 bit,
// depending on the OS type and/or version of the runtime library which
// comes with the build environment
t = ucap.tstamp.sec;

// eventually do an epoch conversion here to support dates after January
2038.

if (we_want_local_time)

http://www.meinbergglobal.com/english/specs/capstr.htm

Meinberg Driver and API Concepts 23/28 Last update on 2023-11-17 10:53

 t += ucap.utc_offs;

// convert ot broken down date and time
tm = *gmtime(&t);

The tm structure also contains a field tm_yday which returns the day of year.

The function localtime() should not be used here since it accounts for the time zone settings and
local time offset of the operating system at the time when the time stamp or capture event is
evaluated, but not the local time offset at the moment when the trigger slope was recorded, or the
time stamp was read from a device.

Instead, the UTC offset returned with the PCPS_HR_TIME structure can be used as shown in the
example above.

The frac field of the PCPS_TIME_STAMP structure doesn't provide the number of microseconds or
nanoseconds but instead contains the binary fractions of the time stamp, i.e.:

0x00000000 = 0.00000000 s
0x80000000 = 0.50000000 s
0xFFFFFFFF = 0.9999999999999999… s

The advantages of using binary fractions instead of a number of microseconds or nanoseconds are:

Easy computations without having to check ranges (0 to 1000000 microseconds, or 0 to
1000000000 nanoseconds), i.e. seconds must be incremented when fractions just roll over from
0xFFFFFFFF to 0x00000000.

Always same high resolution 2^-32 s =~ 0.23 ps for the least significant bit (resolution, not
accuracy of a time stamp!)

The following function can be used to convert the binary fractions to a number of milliseconds or
microseconds, according to the application's requirements:

uint32_t frac_sec_from_bin(uint32_t b, uint32_t scale)
{
 return (uint32_t) ((PCPS_HRT_FRAC_CONVERSION_TYPE) b * scale
 / PCPS_HRT_BIN_FRAC_SCALE);
}

// frac_sec_from_bin
long milliseconds = frac_sec_from_bin(ucap.tstamp.frac, 1000);
long microseconds = frac_sec_from_bin(ucap.tstamp.frac, 1000000);

Please note that for printing the fractions e.g. using printf() the format string for the fractions
must specify the field width corresponding to the resolution used for the conversion as shown above,
e.g. ”%06li“ for microseconds:

Meinberg Driver and API Concepts 24/28 Last update on 2023-11-17 10:53

// print date/time in ISO format:
printf(”%04i-%02i-%02i %02i:%02i:%02i.%06li“,
 tm.tm_year + 1900, tm.tm_mon + 1; tm.tm_mday,
 tm.tm_hour, tm.tm_min, tm→tm_sec,
 (long) microseconds);

Accordingly, ”%03li“ has to be used for milliseconds:

printf(”.%03li“, (long) milliseconds);

Using the format

printf(”.%li“, (long) milliseconds);

would print ”.1“ instead of ”.001“ if milliseconds == 1, which is obviously wrong since this means
0.1s instead of 0.001s.

The same applies to microseconds accordingly, if ”.li“ was used instead of ”.%06li“.

Enabling of Output Signals

Some of the output signals provided by Meinberg devices can be configured to be enabled always
immediately after the device has been powered up, or only after the device has synchronized to its
reference time signal.

The associated data structure is called ENABLE_FLAGS, and the current settings are stored in non-
volatile memory on the device. The header file gpsdefs.h defines the structure and the associated
constants to be written to the structure's data fields.

For example to enable the synthesizer output (if provided) immediately after power-up:

ENABLE_FLAGS ef;
int rc;

// read current settings
rc = mbg_get_gps_enable_flags(dh, &ef);
// be sure rc == MBG_SUCCESS

ef.serial = EF_OFF; // off until synchronized
ef.synth = EF_SYNTH; // always enabled

// write new settings
rc = mbg_set_gps_enable_flags(dh, &ef);
// be sure rc == MBG_SUCCESS

Meinberg Driver and API Concepts 25/28 Last update on 2023-11-17 10:53

Please note each of the fields can only be set to some specific values defined in file gpsdefs.h.

The Programmable Synthesizer

Some PCI cards provide a programmable frequency synthesizer the frequency of which can be
determined or set via API calls. The following API calls are available, and mbg_dev_has_synth()
should be called first to check if a synthesizer is provided by the particular device. See also chapter …

mbg_dev_has_synth() determine if a synthesizer is provided
mbg_get_synth() get current settings
mbg_set_synth() write new settings
mbg_get_synth_state() get the state of the synthesizer

Setting the Synthesizer Output

Please note the synthesizer output can be configured to be enabled only after the device has
synchronized to its time source, or always after power-up. See here for details.

The synthesizer frequency can be set with 4 digits to determine the frequency in 0.1 Hz units, plus a
range value used as multiplier. The related data structures and definitions can be found in file
gpsdefs.h, mainly:

// Synthesizer configuration parameters
typedef struct
{
 int16_t freq; ///< four digits used; scale: 0.1 Hz; e.g. 1234 → 123.4
Hz
 int16_t range; ///< scale factor for freq; 0..::MAX_SYNTH_RANGE
 int16_t phase; ///< -::MAX_SYNTH_PHASE..+::MAX_SYNTH_PHASE; >0 → pulses
later

} SYNTH;

The API call mbg_get_synth() retrieves this structure with the current settings, and the API call
mbg_set_synth() writes this structure with updated settings to the device.

The example code below sets up a frequency of 100 Hz with 180° phase shift:

SYNTH synth;
int rc;

synth.freq = 1000; // 100.0 base value

Meinberg Driver and API Concepts 26/28 Last update on 2023-11-17 10:53

synth.range = 0; // multiplied by 1e0
synth.phase = 1800; // 0.1° units → 180.0°

rc = mbg_set_synth(dh, &synth);
// On success, rc should be MBG_SUCCESS

Checking the Synthesizer State

The synthesizer state can be checked using the function get_synth_state() which fills up a
SYNTH_STATE structure. The state field of this structure contains a number represented by one of the
following symbols:

SYNTH_DISABLED // disbled by cfg, i.e. freq == 0.0
SYNTH_OFF // not enabled after power-up
SYNTH_FREE // enabled, but not synchronized
SYNTH_DRIFTING // has initially been sync'd, but now running free
SYNTH_SYNC // fully synchronized

For detailed information please see the comments in file gpsdefs.h.

Calling API Functions from Other Kernel Modules

In newer versions of the Meinberg driver packages the kernel modules also export some functions
which can safely be called from other kernel modules:

mbgclock_default_get_fast_hr_timestamp()
mbgclock_default_get_fast_hr_timestamp_cycles()
mbgclock_default_clr_ucap_buff()
mbgclock_default_get_ucap_entries()
mbgclock_default_get_ucap_event()

see the mbgclock.h file from the driver package or SDK for the full prototypes.

Why is the Driver not Shipped with Open Source Systems?

In the past there have been several discussions about the pro's and con's of the Meinberg driver
concept, i.e., providing the driver as a standalone product vs. adding the driver code to the source
tree of a specific OS, e.g. Linux or *BSD.

Meinberg Driver and API Concepts 27/28 Last update on 2023-11-17 10:53

Here are some points:

* Adding a driver to the source code tree / code base of a specific OS usually also requires the formal
coding style for the OS is being used, so you often can not commit the same source modules to
different OS source trees.

As a consequence of the above, the same set of modifications has to be applied to several
similar source code modules for several operating systems. Using our library approach, we have
to implement these modifications only once and then simply pull the updated files into the
driver sources for all supported OSs.

If the driver code comes as a part of the OS, you usually have to upgrade the OS to get a newer
version of the driver which supports e.g. new device types or new features. With the Meinberg
approach the OS-specific code is such that it can be used in the same way under several OS
versions. For example, the same driver package for Windows can be installed on all Windows
versions from Windows NT up to Windows 11 or Server 2022. The Linux driver package can be
used with all 2.6.x and 3.x, 4.x, 5.x and 6.x kernels, and the kernel API changes between 2.6.0
and the latest kernel releases are covered in the OS-specific parts of the code.

The advantage of the above is that even customers who have stuck with an older version of the OS
for some reasons can install a brand new PCI card model, and install a driver which works with the
new card on an older OS.

The advantage of easier maintenance using a driver library also covers the API for user space
applications. The API functions do not only provide ways to read the current time from a card. There
are also API functions which query whether a specific feature is supported by a card, or which can and
have to be used to configure the card according to the card's possibilities and requirement of the
target system.

For example, if you install one of our IRIG receiver cards you have to configure the UTC offset of the
incoming IRIG signal first, otherwise the card will never synchronize to any input signal. This is to
prevent the system time from being unintentionally set to a wrong time or date immediately after
installation, since most commonly used IRIG signal frame types don't provide information whether
they carry UTC, or some local time. See IRIG Time Code Basics.

Unsupported Operating Systems

Meinberg driver implementations are using a set of library-like source modules to implement the basic
functions of the driver, i.e. to detect and support all features provided by a particular card.

These pieces of code are mostly source code compatible across all supported operating systems,
which actually includes Windows, Linux, FreeBSD, NetBSD as well as older OS types like MS-DOS,
Novell NetWare, etc. Supported hardware platforms are actually x86/x86_64, Sparc64, Itanium IA64,
and ARM.

The driver code library supports plug and play operating systems like Linux and Windows where the
OS kernel scans the PCI bus, then loads the associated driver and calls the driver's probe routine for

https://kb.meinbergglobal.com/kb/irig_time_code_basics

Meinberg Driver and API Concepts 28/28 Last update on 2023-11-17 10:53

each particular PCI device it has found, as well as old systems like Windows NT where the driver is
loaded on demand and then scans the PCI bus by itself to see if any device is found which is
supported by the driver.

Similarly, the library supports target systems where hardware access can only be done in kernel
space while normal applications usually run in user space, calling kernel functions via IOCTL. On the
other hand it also supports targets where an application can access the hardware directly, for
example in plain old MS-DOS.

Which way is used for a particular target system is simply controlled by some #define statements. To
support a specific target OS with kernel drivers a skeleton driver for the target OS is required which
provides the glue functions to the kernel, e.g., implements a probe routine for a PCI device which then
calls our library probe routine to check the device, implements an IOCTL routine which then calls the
ioctl handler which is defined as inline function in our library, etc.

Also it must be known how to define proper IOCTL codes from a set of enumerated numbers, how
spinlock and mutex functions are implemented in kernel space, etc.

For highest accuracy and latency compensation it would be good to know if there is a high resolution
timer API available for the target platform and/or operating system, similar to the TSC on Intel
x86/x86_64, which could also be called from a user space application, similar to the RDTSC inline asm
instruction on x86/x86_64.

Endianess conversion is already handled in the common library code, so the existing driver library
code can be used on little endian systems, e.g. x86/x86_64, as well as on big endian systems, e.g.
Sparc64.

— Martin Burnicki martin.burnicki@meinberg.de, last updated 2023-11-17

mailto:martin.burnicki@meinberg.de

	Table of Contents
	Meinberg Driver and API Concepts
	Introduction
	Meinberg's Policy for Driver Software Packages
	Driver Usage
	Providing the Reference Time to NTP
	The Old Approach
	The New Approach

	Using Meinberg API Calls for PCI And USB Devices
	Development for Linux
	Development for Windows
	Opening a Device
	Closing the Device
	Getting Basic Device Information
	Checking if a Specific Feature is Supported
	Current Feature Check Functions
	Deprecated Feature Check Functions
	Deprecated Feature Check Macros

	Getting the Time from a Device
	A Legacy Call Returning Calendar Date and Time
	High Resolution Time
	Reading High Resolution Time and Status
	Reading Fast High Resolution Time Stamps Without Status
	Compensating the API Call Latency
	Access Times
	Interpolating the Time from the PCI Card

	Using the Time Capture Inputs
	Common Hints
	Specific Information for the PTP270PEX Card
	Handling Time Capture Events via the PCI Bus
	Getting Time Capture Events via a Serial Port

	Converting Time Stamps to Calendar Date and Time
	Enabling of Output Signals
	The Programmable Synthesizer
	Setting the Synthesizer Output
	Checking the Synthesizer State

	Calling API Functions from Other Kernel Modules
	Why is the Driver not Shipped with Open Source Systems?
	Unsupported Operating Systems

